Insulation

Insulation, any material that is a poor conductor of heat or electricity, and that is used to suppress the flow of heat or electricity.

ELECTRIC INSULATION

The perfect insulator for electrical applications would be a material that is absolutely nonconducting; such a material does not exist. The materials used as insulators, although they do conduct some electricity, have a resistance to the flow of electric current as much as 2.5 × 1024 greater than that of good electrical conductors such as silver and copper. Materials that are good conductors have a large number of free electrons (electrons not tightly bound to atoms) available to carry the current; good insulators have few such electrons. Some materials such as silicon and germanium, which have a limited number of free electrons, are semiconductors and form the basic material of transistors.

In ordinary electric wiring, plastics are commonly used as insulating sheathing for the wire itself. Very fine wire, such as that used for the winding of coils and transformers, may be insulated with a thin coat of enamel. The internal insulation of electric equipment may be made of mica or glass fibers with a plastic binder. Electronic equipment and transformers may also use a special electrical grade of paper. High-voltage power lines are insulated with units made of porcelain or other ceramic, or of glass.

THERMAL INSULATION

Thermal insulating materials are used to reduce the flow of heat between hot and cold regions. The sheathing often placed around steam and hot-water pipes, for instance, reduces heat loss to the surroundings, and insulation placed in the walls of a refrigerator reduces heat flow into the unit and permits it to stay cold.

Thermal insulation may have to fulfill one or more of three functions: to reduce thermal conduction in the material where heat is transferred by molecular or electronic action; to reduce thermal convection currents, which can be set up in air or liquid spaces; and to reduce radiation heat transfer where thermal energy is transported by electromagnetic waves. Conduction and convection can be suppressed in a vacuum, where radiation becomes the only method of transferring heat. If the surfaces are made highly reflective, radiation can also be reduced. Thus, thin aluminum foil can be used in building walls, and reflecting metal on roofs minimizes the heating effect of the sun. Thermos bottles or Dewar flasks (see Cryogenics) provide insulation through an evacuated double-wall arrangement in which the walls have reflective silver or aluminum coatings. See also Heat Transfer.

Comments

Popular posts from this blog

Beryllium

Electricity and Magnetism

Periodic Law