Matter & Energy


Matter is composed of atoms or groups of atoms called molecules. The arrangement of particles in a material depends on the physical state of the substance. In a solid, particles form a compact structure that resists flow. Particles in a liquid have more energy than those in a solid. They can flow past one another, but they remain close. Particles in a gas have the most energy. They move rapidly and are separated from one another by relatively large distances.

Electromagnetic Spectrum

.
The electromagnetic spectrum refers to the entire range of frequencies or wavelengths of electromagnetic waves (see Electromagnetic Radiation). Light traditionally refers to the range of frequencies that can be seen by humans. The frequencies of these waves are very high, about one-half to three-quarters of a million billion (5 x 1014 to 7.5 x 1014) Hz. Their wavelengths range from 400 to 700 nm. X rays have wavelengths ranging from several thousandths of a nanometer to several nanometers, and radio waves have wavelengths ranging from several meters to several thousand meters.

Waves with frequencies a little lower than the range of human vision (and with wavelengths correspondingly longer) are called infrared. Waves with frequencies a little higher and wavelengths shorter than human eyes can see are called ultraviolet. About half the energy of sunlight at Earth’s surface is visible electromagnetic waves, about 3 percent is ultraviolet, and the rest is infrared.

Each different frequency or wavelength of visible light causes our eye to see a slightly different color. The longest wavelength we can see is deep red at about 700 nm. The shortest wavelength humans can detect is deep blue or violet at about 400 nm. Most light sources do not radiate monochromatic light. What we call white light, such as light from the Sun, is a mixture of all the colors in the visible spectrum, with some represented more strongly than others. Human eyes respond best to green light at 550 nm, which is also approximately the brightest color in sunlight at Earth’s surface.