Camphor is insoluble in water, soluble in organic solvents, and melts at 176° C (349° F) and boils at 209° C (405° F).
Online Encyclopedia Blog For Kid's Research In Sciences, Health, Environment and Technology
Camphor
Camphor is insoluble in water, soluble in organic solvents, and melts at 176° C (349° F) and boils at 209° C (405° F).
Ozone
Ozone is one of three forms, called allotropes, of the element oxygen. Ozone is triatomic, meaning that it has three atoms in each molecule (formula O3). Ordinary, or diatomic, oxygen (O2) is more stable than ozone and accounts for the bulk of oxygen in the atmosphere. Electrical sparks and ultraviolet light can cause ordinary oxygen to form ozone. The presence of ozone sometimes causes a detectable odor near electrical outlets.
PROPERTIES
At normal temperatures and pressures ozone is a gas with a specific gravity of 2.144 (about 1.5 times the density of ordinary oxygen gas). Ozone accounts for only a tiny fraction of the atmosphere and is normally invisible, but high concentrations of ozone gas are pale blue. The gas condenses to a liquid at -111.9°C (-169.52°F) and freezes at -192.5°C (-314.5°F). Liquid ozone is deep blue, and is diamagnetic (repelled by magnetic fields). Solid ozone is dark purple. Ozone is much more active chemically than ordinary oxygen. It is used in purifying water, sterilizing air, and bleaching certain foods.
Learn more:
ENVIRONMENTAL EFFECTS
Chlorofluorocarbons (CFCs)
Chlorofluorocarbons (CFCs), family of synthetic chemicals that are compounds of the elements chlorine, fluorine, and carbon. CFCs are stable, nonflammable, noncorrosive, relatively nontoxic chemicals and are easy and inexpensive to produce. During the 1970s, scientists linked CFCs to the destruction of Earth’s ozone layer. The manufacture of CFCs has since been banned in most countries.
USES
Scientists developed the first CFCs during the late 1920s. The compounds subsequently became used in a wide range of industrial products in the United States, Europe, and Japan. Manufacturers used CFCs as refrigerants in refrigerators, freezers, air conditioners, and heat pumps, and as propellants in aerosols and medical inhalers. CFCs also served as insulating foams in packaging materials, furniture, bedding, and car seats. Cleaning agents for electronic circuit boards, metal parts, and dry cleaning processes also used CFCs.
Learn more:
Allotrope
One of the best-known examples of allotropy is carbon, which has multiple distinct allotropes including graphite, diamond, and buckminsterfullerene. Carbon atoms in diamond form a rigid, three-dimensional structure, with each carbon atom bonded to four other carbon atoms. In graphite the carbon atoms form stacks of flat honeycomb layers with only weak intermolecular forces between layers, while buckminsterfullerene forms balls and tubes with structures reminiscent of the geodesic domes designed by the architect Richard Buckminster Fuller.
Elements exhibiting allotropy include arsenic, antimony, iron, oxygen, phosphorus, selenium, sulfur, and tin.
There are two main kinds of allotropy, monotropy and enantiotropy. Monotropy (monotropic allotropy) occurs when one form of a substance is stable at all temperatures, while any other forms are metastable, and change (sometimes very slowly) into the stable form. For carbon, graphite is the stable monotrope, while diamond and buckminsterfullerene change, extremely slowly, into graphite. Phosphorus also exhibits monotropy: Red phosphorus is stable, while white (sometimes called yellow) phosphorus is metastable.
Enantiotropy (enantiotropic allotropy) occurs when one solid form of the substance changes into another solid form of the same substance when at a definite transition temperature. Tin, which changes from white tin to gray tin below 13°C (55°F), is an example of this type of allotropy. Gray tin is much more brittle than white tin. The Greek philosopher Aristotle recorded tin statues collapsing in the intense cold as long ago as the 4th century BC.
Infrared Radiation
Infrared radiation is used to obtain pictures of distant objects obscured by atmospheric haze, because visible light is scattered by haze but infrared radiation is not. The detection of infrared radiation is used by astronomers to observe stars and nebulas that are invisible in ordinary light or that emit radiation in the infrared portion of the spectrum.
An opaque filter that admits only infrared radiation is used for very precise infrared photographs, but an ordinary orange or light-red filter, which will absorb blue and violet light, is usually sufficient for most infrared pictures. Developed about 1880, infrared photography has today become an important diagnostic tool in medical science as well as in agriculture and industry. Use of infrared techniques reveals pathogenic conditions that are not visible to the eye or recorded on X-ray plates. Remote sensing by means of aerial and orbital infrared photography has been used to monitor crop conditions and insect and disease damage to large agricultural areas, and to locate mineral deposits. In industry, infrared spectroscopy forms an increasingly important part of metal and alloy research, and infrared photography is used to monitor the quality of products.
Fossil Fuels
Chemically, fossil fuels consist largely of hydrocarbons, which are compounds composed of hydrogen and carbon. Some fossil fuels also contain smaller amounts of other compounds. Hydrocarbons form from ancient living organisms that were buried under layers of sediment millions of years ago. As accumulating sediment layers exerted increasing heat and pressure, the remains of the organisms gradually transformed into hydrocarbons. The most commonly used fossil fuels are petroleum, coal, and natural gas. These substances are extracted from the earth’s crust and, if necessary, refined into suitable fuel products, such as gasoline, heating oil, and kerosene. Some of these hydrocarbons may also be processed into plastics, chemicals, lubricants, and other nonfuel products. Geologists have identified other types of hydrocarbon-rich deposits that can serve as fuels. Such deposits, which include oil shale, tar sands, and gas hydrates, are not widely used because they are too costly to extract and refine.
The majority of fossil fuels are used in the transportation, manufacturing, residential heating, and electric-power generation industries. Crude petroleum is refined into gasoline, diesel fuel, and jet fuel, which power the world’s transportation system. Coal is the fuel most commonly burned to generate electric power, and natural gas is used primarily in commercial and residential buildings for heating water and air, for air conditioning, and as fuel for stoves and other heating appliances.
Learn more:
Formation of Fossil Fuels
Most organic debris is destroyed at the earth's surface by oxidation or by consumption by microorganisms. Organic material that survives to become buried under sediments or deposited in other oxygen-poor environments begins a series of chemical and biological transformations that may ultimately result in petroleum, natural gas, or coal. Many such deposits occur in sedimentary basins (depressed areas in the earth’s crust where sediments accumulate), and along continental shelves. Sediments may accumulate to depths of several thousand feet in a basin, exerting pressures up to one hundred million pascals (tens of thousands of pounds per square inch) and temperatures of several hundred degrees on the organic material. Over millions of years, these conditions can chemically transform the organic material into petroleum, natural gas, coal, or other types of fossil fuels.
A. Petroleum Formation
B. Coal Formation
C. Natural Gas Formation
D. Other Fossil Fuels
Petroleum Formation
Sometimes, the petroleum and natural gas would slowly fill the tiny holes within nearby porous rocks, which geologists call reservoir rocks. Because these porous rocks were usually filled with water, the liquid and gaseous hydrocarbons (which are less dense and lighter than water) migrated upward, through the earth’s crust, sometimes for long distances. A portion of these hydrocarbons would eventually encounter an impermeable (nonporous) layer of rock in an anticline, salt dome, fault trap, or stratigraphic trap. The impermeable rock would trap the hydrocarbons, creating a reservoir of petroleum and natural gas. Exploration geologists seek these underground formations because they often contain recoverable petroleum deposits. The fluids and gases caught in these geologic traps typically separate into three layers: water (highest density, bottom layer), petroleum (middle layer), and natural gas (low density, top layer).
Coal Formation
Natural Gas Formation
Other Fossil Fuels
Tar sands are heavy, asphaltlike hydrocarbons found in sandstone. Tar sands form where petroleum migrates upward into deposits of sand or consolidated sandstone. When the petroleum is exposed to water and bacteria present in the sandstone, the hydrocarbons often degrade over time into heavier, asphaltlike bitumen. Oil shale is a fine-grained rock containing high concentrations of a waxy organic material known as kerogen. Oil shale forms on lake and ocean bottoms where dead algae, spores, and other microorganisms died millions of years ago and accumulated in mud and silt. The increasing pressure and temperature from the buildup of overlying sediments transformed the organic material into kerogen and compacted the mud and silt into oil shale. However, this pressure and heat was insufficient to chemically break down the kerogen into petroleum. Because the hydrocarbons contained in tar sand and oil shale are not fluids, these hydrocarbons are more difficult and costly to recover than liquid petroleum.
Removing and Refining Fossil Fuels
Petroleum and Natural Gas
To locate deposits of petroleum and natural gas, exploration geologists search for geologic regions containing the ingredients necessary for petroleum formation: organic-rich source rock, burial temperatures sufficiently high to generate petroleum from organic material, and petroleum-trapping rock formations.
When potentially petroleum-rich geologic formations are identified, wells are drilled into the sedimentary basin. If a well intersects porous reservoir rock containing significant petroleum and natural gas deposits, pressure inside the trap may force the liquid hydrocarbons spontaneously to the surface. However, pressure inside the trap typically declines to the point where the petroleum must be pumped to the surface.
Once petroleum has been extracted from the ground, it is transported by pipeline, truck, or tanker to a refinery to be separated into liquid and gas components. Raw petroleum is heated to distill hydrocarbons by molecular weight. Lighter molecules are separated and refined into gasoline and other fuels, while heavier molecules are processed into engine lubricants, asphalt, waxes, and other products. Because demand for fuel far exceeds demand for the products made from the heavier hydrocarbons, refiners often break apart the heavy molecules into lighter ones that can be refined into gasoline. They do so by means of processes called thermal cracking and catalytic cracking.
Coal
Because of their enormity, the world’s most extensive coal beds have already been identified. Modern underground mining commonly employs machines called longwall miners to remove coal. These machines use rotating drums studded with picks to rip coal from seams in large chunks.
Surface-mine operators use mammoth earth-moving shovels to mine coal. These shovels first remove overlying soil and rock so the coal beds can be blasted apart. The blasted coal is scooped up and loaded into the beds of huge trucks for transport.
Fossil Fuels: Commercial Uses
Direct Combustion
Fossil fuels are primarily burned to produce energy. This energy is used to power automobiles, trucks, airplanes, trains, and ships around the world; to fuel industrial manufacturing processes; and to provide heat, light, air conditioning, and energy for homes and businesses.
To provide fuel for transportation, petroleum is refined into gasoline, diesel fuel, jet fuel, and other derivatives used in most of the world’s automobiles, trucks, trains, aircraft, and ships.
Demand for natural gas, historically considered a waste by-product of petroleum and coal mining, is growing in business and industry because it is a cleaner-burning fuel than petroleum or coal. Natural gas, which can be piped directly to commercial plants or individual residences and used on demand, is used for heating and for air conditioning. Residential uses of natural gas also include fuel for stoves and other heating appliances.
Electricity Generation
In addition to direct combustion for commercial uses, fossil fuels are also burned to generate most of the world’s electric power. In 2001 fossil fuel fired power plants produced 64 percent of the world’s electrical power, down from 71 percent in the late 1970s. In 2001 the world’s remaining electricity supply was generated primarily by hydroelectric power (17 percent) and nuclear fission (17 percent), with solar, geothermal, and other sources accounting for a relatively small amount.
Popular Posts
-
. Many similarities exist between electric and magnetic phenomena. A magnet has two opposite poles, referred to as north and south. Opposit...
-
. The relationship between current, voltage, and resistance is given by Ohm’s law. This law states that the amount of current passing throu...
-
Quantum Theory, in physics, description of the particles that make up matter and how they interact with each other and with energy. Quantum ...
-
. Periodic Table, table of the chemical elements arranged to illustrate patterns of recurring chemical and physical properties. Elements, su...
-
Electromagnetic Radiation is the energy waves produced by the oscillation or acceleration of an electric charge. Electromagnetic waves have ...