Posts

The Quantum Explanation of Spectral Lines

The explanation for exact spectral lines for each substance was provided by the  quantum theory . In his 1913 model of the hydrogen atom Niels Bohr showed that the observed series of lines could be explained by assuming that electrons are restricted to atomic orbits in which their orbital angular momentum is an integral multiple of the quantity   h /2π, where  h  is Planck's constant. The integer multiple (e.g., 1, 2, 3 …) of  h /2π is usually called the quantum number and represented by the symbol  n. When an electron changes from an orbit of higher energy (higher angular momentum) to one of lower energy, a  photon  of light energy is emitted whose frequency ν is related to the energy difference Δ E  by the equation ν=Δ E / h. For hydrogen, the frequencies of the spectral lines are given by ν= cR  (1/ n f 2 −1/ n i 2 ) where  c  is the speed of light,  R is the Rydberg constant, and  n f  and  n ...

Spectrum

Spectrum, arrangement or display of light or other form of radiation separated according to wavelength, frequency, energy, or some other property. Beams of charged particles can be separated into a spectrum according to mass in a mass spectrometer (see mass spectrograph ). Physicists often find it useful to separate a beam of particles into a spectrum according to their energy. Continuous and Line Spectra Dispersion, the separation of visible light into a spectrum, may be accomplished by means of a prism or a diffraction grating. Each different wavelength or frequency of visible light corresponds to a different color , so that the spectrum appears as a band of colors ranging from violet at the short-wavelength (high-frequency) end of the spectrum through indigo, blue, green, yellow, and orange, to red at the long-wavelength (low-frequency) end of the spectrum. In addition to visible light, other types of electromagnetic radiation may be spread into a spectrum according to...

Conservation Laws

Conservation laws, in physics, basic laws that together determine which processes can or cannot occur in nature; each law maintains that the total value of the quantity governed by that law, e.g., mass or energy, remains unchanged during physical processes. Conservation laws have the broadest possible application of all laws in physics and are thus considered by many scientists to be the most fundamental laws in nature. Conservation of Classical Processes Most conservation laws are exact, or absolute, i.e., they apply to all possible processes; a few conservation laws are only partial, holding for some types of processes but not for others. By the beginning of the 20th cent. physics had established conservation laws governing the following quantities: energy, mass (or matter), linear momentum, angular momentum , and electric charge. When the theory of relativity showed (1905) that mass was a form of energy, the two laws governing these quantities were combined into a single l...

Momentum

Momentum, in mechanics, the quantity of motion of a body, specifically the product of the mass of the body and its velocity . Momentum is a vector quantity; i.e., it has both a magnitude and a direction, the direction being the same as that of the velocity vector. When an external force acts upon a body or a system of bodies in motion, it causes a change in the momentum of the body. The impulse of a force acting on a body is the product of the force and the duration of time in which it acts and is equal to the change in momentum of the body. When no external force acts upon a body in motion or a system of bodies there is no change in the total momentum even though, as in the case of a system of bodies, there may be an internal disturbance of the system resulting in changes in the momenta of individual bodies. This conclusion is commonly known as the principle of the conservation of momentum (see conservation laws , in physics). The momentum of a body should not be confused with its ki...

Official Symbols and Names for the Elements

Each element is assigned an official symbol by the International Union of Pure and Applied Chemistry (IUPAC). For example, the symbol for carbon is C, and the symbol for silver is Ag [Lat.  argentum  = silver]. There are several ways of designating an isotope. One designation consists of the name or symbol of the element followed by a hyphen and the mass number of the isotope; thus the isotope of carbon with mass number 12 can be designated carbon-12 or C-12. The mass number is often written as a superscript, e.g., C 12 ; sometimes the atomic number is written as a subscript preceding the symbol, e.g.,  6 C 12 . The IUPAC rules for nomenclature of inorganic chemistry state that the subscript atomic number and superscript mass number should both precede the symbol, e.g.,  12 6 C. Many isotopes were given special names and symbols when they were first discovered in natural radioactive decay series (e.g., uranium-235 was called actinouranium and represented by the sym...

Nonmetal

Nonmetal, chemical element possessing certain properties by which it is distinguished from a metal . In general, this distinction is drawn on the basis that a nonmetal tends to accept electrons and form negative ions and that its oxide is acidic. Nonmetals are poor conductors of heat and electricity and do not have the luster of metals. Arsenic, antimony, selenium, and tellurium exhibit both nonmetallic and metallic properties and are called metalloids. Unlike the metals, which are all solids (with the exception of mercury) under ordinary conditions of temperature and pressure, the nonmetals appear in all three states. Argon, chlorine, fluorine, helium, hydrogen, krypton, neon, nitrogen, oxygen, and xenon are normally gases. Bromine is a liquid. Boron, carbon, iodine, phosphorus, silicon, and sulfur are solids. Certain of them, e.g., boron, carbon, iodine, silicon, and sulfur, form crystals, as do the metals. In hardness they vary considerably. Carbon in its allotropic form, the dia...

Properties of the Elements

Properties of an element are sometimes classed as either chemical or physical. Chemical properties are usually observed in the course of a chemical reaction, while physical properties are observed by examining a sample of the pure element. The chemical properties of an element are due to the distribution of electrons around the atom's nucleus, particularly the outer, or valence, electrons; it is these electrons that are involved in chemical reactions. A chemical reaction does not affect the atomic nucleus; the atomic number therefore remains unchanged in a chemical reaction. Some properties of an element can be observed only in a collection of atoms or molecules of the element. These properties include color, density, melting point, boiling point, and thermal and electrical conductivity. While some of these properties are due chiefly to the electronic structure of the element, others are more closely related to properties of the nucleus, e.g., mass number. The elements are someti...