The Atom

.
Fission and Fusion
Nuclear energy can be released in two different ways: fission, the splitting of a large nucleus, and fusion, the combining of two small nuclei. In both cases energy—measured in millions of electron volts (MeV)—is released because the products are more stable (have a higher binding energy) than the reactants. Fusion reactions are difficult to maintain because the nuclei repel each other, but fusion creates much less radioactive waste than does fission.


The atom consists of a small, massive, positively charged core (nucleus) surrounded by electrons (see Atom). The nucleus, containing most of the mass of the atom, is itself composed of neutrons and protons bound together by very strong nuclear forces, much greater than the electrical forces that bind the electrons to the nucleus. The mass number A of a nucleus is the number of nucleons, or protons and neutrons, it contains; the atomic number Z is the number of positively charged protons. A specific nucleus is designated as the expression , for example, represents uranium-235. See Isotope.

The binding energy of a nucleus is a measure of how tightly its protons and neutrons are held together by the nuclear forces. The binding energy per nucleon, the energy required to remove one neutron or proton from a nucleus, is a function of the mass number A. The curve of binding energy implies that if two light nuclei near the left end of the curve coalesce to form a heavier nucleus, or if a heavy nucleus at the far right splits into two lighter ones, more tightly bound nuclei result, and energy will be released.

Comments

Popular posts from this blog

Converting Food to Usable Energy

Beryllium

Electricity and Magnetism