Photosynthesis Variations

.
A majority of plants use these steps in photosynthesis. Plants such as corn and crabgrass that have evolved in hot, dry environments, however, must overcome certain obstacles to photosynthesis. On hot days, they partially close the pores in their leaves to prevent the escape of water. With the pores only slightly open, adequate amounts of carbon dioxide cannot enter the leaf, and the Calvin cycle comes to a halt. To get around this problem, certain hot-weather plants have developed a way to keep carbon dioxide flowing to the stroma without capturing it directly from the air. They open their pores slightly, take in carbon dioxide, and transport it deep within the leaves. Here they stockpile it in a chemical form that releases the carbon dioxide slowly and steadily into the Calvin cycle. With this system, these plants can continue photosynthesis on hot days, even with their pores almost completely closed. A field of corn thus remains green on blistering days when neighboring plants wither, and crabgrass thrives in lawns browned by the summer sun.

Bacteria lack chloroplasts, and instead use structures called chromatophores—membranes formed by numerous foldings of the plasma membrane, the membrane surrounding the fluid, or cytoplasm, that fills the cell. The chromatophores house thylakoids similar to plant thylakoids, which in some bacteria contain chlorophyll. For these bacteria, the process of photosynthesis is similar to that of plants, algae, and seaweed. Many of these chlorophyll-containing bacteria are abundant in oceans, lakes, and rivers, and the oxygen they release dissolves in the water and enables fish and other aquatic organisms to survive.

Certain archaebacteria, members of a group of primitive bacteria-like organisms, carry out photosynthesis in a different manner. The mud-dwelling green sulfur and purple sulfur archaebacteria use hydrogen sulfide instead of water in photosynthesis. These archaebacteria release sulfur rather than oxygen, which, along with hydrogen sulfide, imparts the rotten egg smell to mudflats. Halobacteria, archaebacteria found in the salt flats of deserts, rely on the pigment bacteriorhodopsin instead of chlorophyll for photosynthesis. These archaebacteria do not carry out the complete process of photosynthesis; although they produce ATP in a process similar to the light-dependent reaction and use it for energy, they do not produce glucose. Halobacteria are among the most ancient organisms, and may have been the starting point for the evolution of photosynthesis.

related topics:

Comments

Popular posts from this blog

Beryllium

Electricity and Magnetism

Electric Fields