Matter & Energy


Matter is composed of atoms or groups of atoms called molecules. The arrangement of particles in a material depends on the physical state of the substance. In a solid, particles form a compact structure that resists flow. Particles in a liquid have more energy than those in a solid. They can flow past one another, but they remain close. Particles in a gas have the most energy. They move rapidly and are separated from one another by relatively large distances.

How Photosynthesis Works

.
Photosynthesis is a very complex process, and for the sake of convenience and ease of understanding, plant biologists divide it into two stages. In the first stage, the light-dependent reaction, the chloroplast traps light energy and converts it into chemical energy contained in nicotinamide adenine dinucleotide phosphate (NADPH) and adenosine triphosphate (ATP), two molecules used in the second stage of photosynthesis. In the second stage, called the light-independent reaction (formerly called the dark reaction), NADPH provides the hydrogen atoms that help form glucose, and ATP provides the energy for this and other reactions used to synthesize glucose. These two stages reflect the literal meaning of the term photosynthesis, to build with light.

A - The Light-Dependent Reaction

Photosynthesis relies on flows of energy and electrons initiated by light energy. Electrons are minute particles that travel in a specific orbit around the nuclei of atoms and carry a small electrical charge. Light energy causes the electrons in chlorophyll and other light-trapping pigments to boost up and out of their orbit; the electrons instantly fall back into place, releasing resonance energy, or vibrating energy, as they go, all in millionths of a second. Chlorophyll and the other pigments are clustered next to one another in the photosystems, and the vibrating energy passes rapidly from one chlorophyll or pigment molecule to the next, like the transfer of energy in billiard balls.

Light contains many colors, each with a defined range of wavelengths measured in nanometers, or billionths of a meter. Certain red and blue wavelengths of light are the most effective in photosynthesis because they have exactly the right amount of energy to energize, or excite, chlorophyll electrons and boost them out of their orbits to a higher energy level. Other pigments, called accessory pigments, enhance the light-absorption capacity of the leaf by capturing a broader spectrum of blue and red wavelengths, along with yellow and orange wavelengths. None of the photosynthetic pigments absorb green light; as a result, green wavelengths are reflected, which is why plants appear green.

B - The Light-Independent Reaction

The chemical energy required for the light-independent reaction is supplied by the ATP and NADPH molecules produced in the light-dependent reaction. The light-independent reaction is cyclic, that is, it begins with a molecule that must be regenerated at the end of the reaction in order for the process to continue. Termed the Calvin cycle after the American chemist Melvin Calvin who discovered it, the light-independent reactions use the electrons and hydrogen ions associated with NADPH and the phosphorus associated with ATP to produce glucose. These reactions occur in the stroma, the fluid in the chloroplast surrounding the thylakoids, and each step is controlled by a different enzyme.

The light-independent reaction requires the presence of carbon dioxide molecules, which enter the plant through pores in the leaf, diffuse through the cell to the chloroplast, and disperse in the stroma. The light-independent reaction begins in the stroma when these carbon dioxide molecules link to sugar molecules called ribulose bisphosphate (RuBP) in a process known as carbon fixation.

related topics: