.

The strength, or amperage, of an alternating current varies continuously between zero and a maximum. Since it is inconvenient to take into account a whole range of amperage values, scientists simply deal with the effective amperage. Like a direct current, an alternating current produces heat as it passes through a conductor. The effective amperage of an alternating current is equal to the amperage of a direct current that produces heat at the same rate. In other words, 1 effective amp of alternating current through a conductor produces heat at the same rate as 1 amp of direct current flowing through the same conductor. Similarly, the voltage of an alternating current is considered in terms of the effective voltage.

The strength, or amperage, of an alternating current varies continuously between zero and a maximum. Since it is inconvenient to take into account a whole range of amperage values, scientists simply deal with the effective amperage. Like a direct current, an alternating current produces heat as it passes through a conductor. The effective amperage of an alternating current is equal to the amperage of a direct current that produces heat at the same rate. In other words, 1 effective amp of alternating current through a conductor produces heat at the same rate as 1 amp of direct current flowing through the same conductor. Similarly, the voltage of an alternating current is considered in terms of the effective voltage.