Matter & Energy

Matter is composed of atoms or groups of atoms called molecules. The arrangement of particles in a material depends on the physical state of the substance. In a solid, particles form a compact structure that resists flow. Particles in a liquid have more energy than those in a solid. They can flow past one another, but they remain close. Particles in a gas have the most energy. They move rapidly and are separated from one another by relatively large distances.

Food Web

Food Web, set of interconnected food chains by which energy and materials circulate within an ecosystem (see Ecology). The food web is divided into two broad categories: the grazing web, which typically begins with green plants, algae, or photosynthesizing plankton, and the detrital web, which begins with organic debris. These webs are made up of individual food chains. In a grazing web, materials typically pass from plants to plant eaters (herbivores) to flesh eaters (carnivores). In a detrital web, materials pass from plant and animal matter to bacteria and fungi (decomposers), then to detrital feeders (detritivores), and then to their predators (carnivores).

Food Web
The sun is the original source of energy in virtually all ecosystems. Producers (plants) convert the light energy into chemical energy, storing it in their cells. When primary consumers (herbivores) eat the producers, the energy changes into a form that can be stored in animal cells. Secondary consumers (carnivores) transform the energy once again. Decomposers may occupy several positions in the pyramid, both receiving energy from decaying plants and animals and supplying it to detrivores and fungus-eaters.

Generally, many interconnections exist within food webs. For example, the fungi that decompose matter in a detrital web may sprout mushrooms that are consumed by squirrels, mice, and deer in a grazing web. Robins are omnivores, that is, consumers of both plants and animals, and thus are in both detrital and grazing webs. Robins typically feed on earthworms, which are detritivores that feed upon decaying leaves.


The food web can be viewed not only as a network of chains but also as a series of trophic (nutritional) levels. Green plants, the primary producers of food in most terrestrial food webs, belong to the first trophic level. Herbivores, consumers of green plants, belong to the second trophic level. Carnivores, predators feeding upon the herbivores, belong to the third. Omnivores, consumers of both plants and animals, belong to the second and third. Secondary carnivores, which are predators that feed on predators, belong to the fourth trophic level. As the trophic levels rise, the predators become fewer, larger, fiercer, and more agile. At the second and higher levels, decomposers of the available materials function as herbivores or carnivores depending on whether their food is plant or animal material.


Through these series of steps of eating and being eaten, energy flows from one trophic level to another. Green plants or other photosynthesizing organisms use light energy from the sun to manufacture carbohydrates for their own needs. Most of this chemical energy is processed in metabolism and dissipated as heat in respiration. Plants convert the remaining energy to biomass, both above ground as woody and herbaceous tissue and below ground as roots. Ultimately, this material, which is stored energy, is transferred to the second trophic level, which comprises grazing herbivores, decomposers, and detrital feeders. Most of the energy assimilated at the second trophic level is again lost as heat in respiration; a fraction becomes new biomass. Organisms in each trophic level pass on as biomass much less energy than they receive. Thus, the more steps between producer and final consumer, the less energy remains available. Seldom are there more than four links, or five levels, in a food web. Eventually, all energy flowing through the trophic levels is dissipated as heat. The process whereby energy loses its capacity to do work is called entropy.