.

Like direct current, alternating current is hindered by the resistance of the conductor through which it passes. In addition, however, various effects produced by the alternating current itself hinder the alternating current. These effects depend on the frequency of the current and on the design of the circuit, and together they are called reactance. The total hindering effect on an alternating current is called impedance. It is equal to the resistance plus the reactance.

The relationship of effective current, effective voltage, and impedance is expressed by V = IZ, where V is the effective voltage in volts, I is the effective current in amperes (amp), and Z is the impedance in ohms.

Like direct current, alternating current is hindered by the resistance of the conductor through which it passes. In addition, however, various effects produced by the alternating current itself hinder the alternating current. These effects depend on the frequency of the current and on the design of the circuit, and together they are called reactance. The total hindering effect on an alternating current is called impedance. It is equal to the resistance plus the reactance.

The relationship of effective current, effective voltage, and impedance is expressed by V = IZ, where V is the effective voltage in volts, I is the effective current in amperes (amp), and Z is the impedance in ohms.