Matter & Energy


Matter is composed of atoms or groups of atoms called molecules. The arrangement of particles in a material depends on the physical state of the substance. In a solid, particles form a compact structure that resists flow. Particles in a liquid have more energy than those in a solid. They can flow past one another, but they remain close. Particles in a gas have the most energy. They move rapidly and are separated from one another by relatively large distances.

Metabolism

.
Metabolism (chemistry), inclusive term for the chemical reactions by which the cells of an organism transform energy, maintain their identity, and reproduce. All life forms—from single-celled algae to mammals—are dependent on many hundreds of simultaneous and precisely regulated metabolic reactions to support them from conception through growth and maturity to the final stages of death. Each of these reactions is triggered, controlled, and terminated by specific cell enzymes or catalysts, and each reaction is coordinated with the numerous other reactions throughout the organism.

ANABOLISM AND CATABOLISM

Two metabolic processes are recognized: anabolism and catabolism. Anabolism, or constructive metabolism, is the process of synthesis required for the growth of new cells and the maintenance of all tissues. Catabolism, or destructive metabolism, is a continuous process concerned with the production of the energy required for all external and internal physical activity. Catabolism also involves the maintenance of body temperature and the degradation of complex chemical units into simpler substances that can be removed as waste products from the body through the kidneys, intestines, lungs, and skin.

Anabolic and catabolic reactions follow what are called pathways—that is, they are linked to produce specific, life-essential end products. Biochemists have been able to determine how some of these pathways weave together, but many of the finer intricacies are still only partly explored. Basically, anabolic pathways begin with relatively simple and diffuse chemical components, called intermediates. Taking their energy from enzyme-catalyzed reactions, the pathways then build toward specific end products, especially macromolecules in the forms of carbohydrates, proteins, and fats. Using different enzyme sequences and taking the opposite direction, catabolic pathways break down complex macromolecules into smaller chemical compounds for use as relatively simple building blocks.

When anabolism exceeds catabolism, growth or weight gain occurs. When catabolism exceeds anabolism, such as during periods of starvation or disease, weight loss occurs. When the two metabolic processes are balanced, the organism is said to be in a state of dynamic equilibrium.

HOW METABOLISM DERIVES ITS ENERGY

In keeping with the first two laws of thermodynamics, organisms can neither create nor destroy energy but can only transform it from one form to another. Thus, the chlorophyll of plants, at the foundation of almost all food and energy-transfer webs (see Food Web), captures energy from sunlight and uses it to power the synthesis of living plant cells from inorganic substances such as carbon dioxide, water, and ammonia. This energy, in the form of high-energy products (carbohydrates, fats, and proteins), is then ingested by herbivores and secondarily by carnivores, providing these animals with their only source of energy and cell-building chemicals.