Matter & Energy

Matter is composed of atoms or groups of atoms called molecules. The arrangement of particles in a material depends on the physical state of the substance. In a solid, particles form a compact structure that resists flow. Particles in a liquid have more energy than those in a solid. They can flow past one another, but they remain close. Particles in a gas have the most energy. They move rapidly and are separated from one another by relatively large distances.

Particle Accelerators

Particle Accelerators, in physics, devices used to accelerate charged elementary particles or ions to high energies. Particle accelerators today are some of the largest and most expensive instruments used by physicists. They all have the same three basic parts: a source of elementary particles or ions, a tube pumped to a partial vacuum in which the particles can travel freely, and some means of speeding up the particles.

Charged particles can be accelerated by an electrostatic field. For example, by placing electrodes with a large potential difference at each end of an evacuated tube, British scientists John D. Cockcroft and Ernest Thomas Sinton Walton were able to accelerate protons to 250,000 eV (see Electron Volt). Another electrostatic accelerator is the Van de Graaff accelerator, which was developed in the early 1930s by the American physicist Robert Jemison Van de Graaff. This accelerator uses the same principles as the Van de Graaff Generator. The Van de Graaff accelerator builds up a potential between two electrodes by transporting charges on a moving belt. Modern Van de Graaff accelerators can accelerate particles to energies as high as 15 MeV (15 million electron volts).